Exact Transition Probabilities for the Independence Metropolis Sampler

نویسنده

  • Richard L. Smith
چکیده

A recent result of Jun Liu's has shown how to compute explicitly the eigen-values and eigenvectors for the Markov chain derived from a special case of the Hastings sampling algorithm, known as the indepdendence Metropolis sampler. In this note, we show how to extend the result to obtain exact n-step transition probabilities for any n. This is done rst for a chain on a nite state space, and then extended to a general (discrete or continuous) state space. The paper concludes with some implications for diagnostic tests of convergence of Markov chain samplers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

First Hitting Time Analysis of the Independence Metropolis Sampler

In this paper, we study a special case of the Metropolis algorithm, the Independence Metropolis Sampler (IMS), in the finite state space case. The IMS is often used in designing components of more complex Markov Chain Monte Carlo algorithms. We present new results related to the first hitting time of individual states for the IMS. These results are expressed mostly in terms of the eigenvalues o...

متن کامل

Optimal scaling of the independence sampler: Theory and Practice

The independence sampler is one of the most commonly used MCMC algorithms usually as a component of a Metropolis-within-Gibbs algorithm. The common focus for the independence sampler is on the choice of proposal distribution to obtain an as high as possible acceptance rate. In this paper we have a somewhat different focus concentrating on the use of the independence sampler for updating augment...

متن کامل

On the use of auxiliary variables in Markov chain Monte Carlo sampling

We study the slice sampler, a method of constructing a reversible Markov chain with a speciied invariant distribution. Given an independence Metropolis-Hastings algorithm it is always possible to construct a slice sampler that dominates it in the Peskun sense. This means that the resulting Markov chain produces estimates with a smaller asymptotic variance. Furthermore the slice sampler has a sm...

متن کامل

On adaptive Metropolis-Hastings methods

This paper presents a method for adaptation in Metropolis-Hastings algorithms. A product of a proposal density and K copies of the target density is used to define a joint density which is sampled by a Gibbs sampler including a Metropolis step. This provides a framework for adaptation since the current value of all K copies of the target distribution can be used in the proposal distribution. Th...

متن کامل

Umacs: A Universal Markov Chain Sampler

Umacs (Universal Markov chain sampler) is an R software package that facilitates the construction of the Gibbs sampler and Metropolis algorithm for Bayesian inference. Umacs is a practical tool to write samplers in R. This is sometimes necessary for large problems that cannot be fit using programs like BUGS. The user supplies the data, parameter names, updating functions, and a procedure for ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996